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Gridded population datasets are instrumental for modeling the interactions between human and 
the environment at fine spatial scales. Many of these datasets are downscaled from source data of 
aggregated population counts by census units. Here, we introduce an Age-Stratified Population 
Estimation from the 2020 China Census by Township (ASPECT), estimating total population and 
population by age groups (0–14, 15–59, 60–64, ≥65 years old) at 100 m spatial resolution as of year 
2020. ASPECT uses the updated source data from the most recent Census of year 2020, incorporating 
population counts and age structures from nearly all townships (n = 40,718) – the finest spatial unit for 
which the 2020 Census data are publicly available. Therefore, ASPECT likely provides improved accuracy 
in gridded population estimation when compared with datasets based on county-level data such as 
WorldPop. Furthermore, ASPECT presents greater spatial variations in the estimated population age 
structure than those from other existing datasets. These advantages of ASPECT allow for more accurate 
estimations on population exposure to environmental hazards and access to public services.

Background & Summary
Spatially explicit datasets on population distribution are instrumental for understanding human interactions 
with the environment, facilitating downstream studies on environmental health1, disaster management2, urban 
ecology3, and racial segregations4. Furthermore, since children and older adults are often considered as vulner-
able populations, spatially explicit population datasets with age structures are often of greater value in research 
applications5.

Prior studies often utilize population data organized by census units to map population distribution. For 
example, one study finds that US census block groups with a higher proportion of older adults are more exposed 
to flooding risks from sea level rise5. However, census units vary in size and may contain a large portion of 
uninhabited areas, and they assume a uniform population distribution within a given unit (which is rarely real-
istic). These limitations post challenges for effectively modeling population spatial distribution and comparisons 
between different geographic locations. Therefore, some studies take a further step to use gridded population 
datasets that refines population distribution within the census unit. For example, Alegana et al. estimated the 
proportion of population under five years old in 1 × 1 km grid cells in Nigeria6. They found that accounting for 
the fine-scale spatial variations in age structure, rather than assuming it being uniform in a census unit, can lead 
to significant differences in the estimated health metrics. These examples highlight the value of having spatially 
explicit population datasets at fine spatial resolutions.

While fine-resolution population datasets can be more accessible in some developed economies such as 
the US and Canada, data accessibility in developing countries like China is less ideal. As a comparison, the US 
Census and American Community Survey provide data organized by hierarchical spatial units of block, block 
group, tract, county, and state. The finest spatial unit, block, often corresponds to a street block in urbanized 
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areas and provides information such as total population, racial and ethnical composition, and age structure. 
The China Census data are organized in a similar hierarchical structure but at coarser spatial resolutions, with 
the finest spatial unit being the township (Fig. 1). Another challenge for using the township-level China Census 
data is the lack of timely updated geospatial boundaries for the townships, which makes georeferencing the data 
difficult. To our best knowledge, the most recent Chinese township boundaries available to the public reflects the 
conditions of 2019. However, due to township boundary modifications and name changes, there are mismatches 
between the 2019 township boundary and the 2020 Census data. More specifically, according the Ministry of 
Civil Affairs, 768 townships in China experienced boundary changes, mostly in forms of merging and splitting 
into new townships7. Updating these boundary changes is a time-consuming but necessary step to properly 
georeference the 2020 Census data.

Researchers have also resorted to gridded population datasets such as WorldPop and LandScan to obtain 
population distribution. Briefly, these datasets employ dasymetric mapping methods to disaggregate population 
counts from census units (source zones) to finer-resolution grid cells (target zones)8. Ancillary data that cor-
relate with population distribution and have fine spatial resolutions are used in this disaggregation. These data 
typically measure the distribution of road, land cover, built structures, topography, elevation, nighttime light 
intensity, and water bodies, with spatial resolutions as fine as sub-100 meters. Regression models are used to 
model the relationship between population counts and the ancillary data variables at the census unit level. The 
resulting models are then applied to the ancillary data in gridded format to predict population count per grid 
cell.

In China, existing gridded population datasets are often disaggregated from outdated source population 
data. Furthermore, county (referred to as district in urban areas) is often used as the source zone, whose coarse 
spatial resolution may compromise the quality of the gridded population dataset. For example, the widely used 
WorldPop (version 2000–2020) provides total population and population by age groups and sex at 100-m spatial 
resolution, annually between 2000 and 2020. Specifically, WorldPop (version 2000–2020) uses the 2010 China 

Fig. 1 Study area, mainland China (a), and boundaries of city, county (district), and township (b). Population 
≥65 and the proportion of this population are also illustrated at the township level in (a) and (b), respectively.
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Census data at township level to estimate gridded total population, and it uses the Census data at county level 
to estimate gridded population by age groups as of 20109,10. Prefecture-level (one level coarser than county – 
and often referred as “city-level”) population growth rate is applied to project population for the subsequent 
years10,11. This coarse resolution of prefecture may fail to capture finer-scale population changes at county and 
township levels. A recent and ongoing update of WorldPop (version 2015–2030, release R2024B V1) aims to 
incorporate county-level data from the most recent 2020 Census12. Although it still relies on county-level pop-
ulation data, this update could help address some inaccuracies in total population and age group estimates in 
WorldPop (2000–2020) caused by outdated census data and prefecture-level growth rates12. A few other datasets 
on China have also used county as the source zone to produce their gridded population estimates13,14. Although 
more time consuming to incorporate, township-level data can better reflect spatial variations of population in 
China. One recent dataset, PopSE, represents the first effort to leverage the 2020 Census township-level pop-
ulation data to estimate grid-level population density15. However, grid-level population density by specific age 
groups, which is also available from the 2020 Census and important for analyzing exposures for vulnerable 
groups, is also needed.

To improve the source data resolution and timeliness, we developed a 100-m resolution Age-Stratified 
Population Estimation from the 2020 China Census by Township (ASPECT). ASPECT intends to cover main-
land China, and the dataset has two main advantages. First, we use population data from 40,718 townships from 
the most recent 2020 Census to train our random forest model for dasymetric mapping; second, in addition to 
total population, ASPECT also estimates population by age groups (0–14, 15–59, 60–64, ≥ 65 years old). These 
additional pieces of information allow for age-group-specific estimates on exposures to environmental hazards 
and access to environmental goods and public services.

Methods
overview. We used a dasymetric mapping approach, similar to the ones by previous studies, to generate 
ASPECT11,15. Specifically, we collected a rich set of covariates that predict population distribution (Fig. 2a). 
Data on these covariates are in forms of 100 m resolution grid cells, which were then aggregated by townships. 
Using the township level data, we trained a random forest model to regress population counts on the covariates 
(Fig. 2b). We then applied this model to the gridded covariates to generate a population weighting layer, using 
which we distributed township-level population to each grid cell (Fig. 2c). Notably, we trained separate random 
forest regression models and conducted subsequent population weighting procedures separately for each popula-
tion group (i.e., total population, age group 0–14, age group 15–59, age group 60–64, and age group 65 and older).

We performed three sets of validations to assess the quality of ASPECT (Fig. 2d). First, we evaluated the 
goodness-of-fit of the township-level regression model. For each grid cell, we then checked whether the esti-
mated total population equaled the sum of estimated population by age groups, as they were estimated from 
sperate dasymetric mapping processes. Lastly, we performed the dasymetric mapping using data at the county 
level, which is one administrative level coarser than township. We aggregated gridded population estimates from 
this county-level mapping by townships and compared with actual township-level values. The comparison helps 
to justify the validity of the dasymetric mapping, with the assumptions that estimations should be more accu-
rate when the township-level data are used. A comparison with existing datasets, including WorldPop version 
2000–2020 (the most recent final release), WorldPop version 2015–2030 (the ongoing update, release R2024B 
V1), and PopSE by Chen et al.15 is also provided.

Fig. 2 Overall workflow of ASPECT.
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Population data. We collected township-level population from the Tabulation on 2020 China Population 
Census by Township16. This 2020 Census dataset measures residential population as of Nov 1, 2020, providing 
information on total population, and population by age groups of 0–14, 15–59, ≥60, and ≥65 years old. The name 
of each township, along with the names of its higher administrative levels—county, city, and province—are also 
provided, which we used to geocode the point location (i.e., the longitude and latitude coordinates in the WGS84 
system) of each township with the Baidu Map geocoding API (https://lbsyun.baidu.com/).

We further collected the administrative boundaries of the townships and linked them with the 2020 Census 
dataset. We obtained a version of township boundaries that were released by the National Platform for Common 
Geospatial Information Services (https://www.tianditu.gov.cn/). Based on our observations, these boundaries 
are likely to reflect the conditions as of 2019. However, according to the Ministry of Civil Affairs, China, bound-
ary changes take place in certain townships between the years7. Therefore, we manually updated the 2019 town-
ship boundaries to match with the 2020 Census data. Specifically, we first identified 39,326 townships with 
their names and locations matched between the 2020 Census (with point locations) and the 2019 township 
boundaries (i.e. the same name and the point falls inside the township boundaries), which we considered as 
having no boundaries changes (n = 36,550), or having incorporated other townships (n = 2,776). We edited the 
remaining, mismatched township boundaries by cross-referencing them with government announcements (e.g., 
Chengdu Civil Affairs Bureau17), publicly available map documents (e.g., Chongzhou Municipal Government18), 
and other boundary datasets such as OpenStreetMap19. The edits involved updating township names, redraw-
ing boundaries, and fixing incorrect Census geocoding, ensuring the updated township boundaries align with 
the geographical representation of the census data. Importantly, these edits were limited to the administrative 
boundaries and Census geocoding, without altering population counts in the Census data. After these edits, we 
obtained 1,392 additional townships with matching 2020 Census data. Out of these, 745 townships had their 
administrative boundaries revised, while 647 maintained their original boundaries. Together, townships with 
boundary changes covered an area of 502,418 km2 (5.16% of the total area of mainland China). 590 townships in 
the 2019 township boundary dataset failed to match with any 2020 Census data (Fig. 3). These townships typi-
cally have keywords of state-run farms, forest plantations, and industrial parks in their names, which may have 
little residential population. We treated these townships as missing data from the 2020 Census. An illustration 
of the updated township boundaries with 2020 Census data is provided in Fig. 1a, indicating a nearly complete 
population data coverage of the study area.

Covariates predicting population distribution. As the next step, we collected data on covariates that 
correlate with population distribution. These covariates include % built-up area, building height, nighttime light 
intensity, distance to road, density of Point of Interest (POI), topography, and water bodies. Definitions and data 
sources of these covariates are in Table 1. We calculated the covariate values for each grid cell and then aggregated 
them into township-level. These aggregated covariates served as inputs for the subsequent analysis.

Similar to Chen et al.15, we used the gridded covariates to generate a mask of inhabited zones to improve 
the quality of gridded population estimates. An inhabited zone should have % built-up area or building height 
greater than zero, and it should not be covered by any water bodies. We performed dasymetric mapping only 
within the inhabited zones, and we treated population estimates outside these zones as zero.

Dasymetric mapping to estimate gridded population. We started by training a series of random for-
est models to measure the relationship between population density and the covariates at the township level. The 
model was trained separately for total population and population by age groups (0–14, 15–59, ≥60, and ≥65 
years old), therefore allowing differential covariate effects in population density predictions. Population density 
was calculated by dividing the township-level population by the area of inhabited zones. We used random for-
est model following prior literature11,15, allowing us to flexibly model nonlinear relationships between popula-
tion density and the covariates. Notably, we did not log transform population density, as pervious literature has 
done11,15. A log transformation will compress the regression error for extremely densely populated townships, 
which could be less straightforward how well the covariates predict township-level population density (i.e., our 
first validation).

Fig. 3 Workflow of updating township boundaries (as of 2019) to match with Census data (2020).
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We tuned the random forest model using parameters of the number of trees and the maximum depth of 
each tree. Specifically, we used the townships within the middle 99% range of population density distribution 
as the candidate to derive training and validation samples. The training sample contains 85% of the candidate 
townships, and the testing sample contains the remaining 15%. We then tuned the model using the grid search 
cross validation method, which iteratively trained the random forest model with every unique combination of 
the tuning parameters’ candidate values. The candidate values for the number of trees included 5, 10, 20, 40, 60, 
80, 100, 150, 200, 400, 600, 800, and 1000, and the candidate values for the maximum depth of each tree included 
10, 20, 40, 50, 60, 70, 80, 90, and 100. We performed a 5-fold cross validation for each combination and recorded 
each iteration’s performance using root mean squared error (RMSE). The parameter values giving the lowest 
RMSE was used to specify the final model. We applied this final model in the next steps, and we reported this 
model’s goodness-of-fit by applying it to the testing set as our first validation.

Using the gridded covariates as the input, we applied the final model to estimate a population weight for 
each grid cell. Next, we distributed township-level population to each grid cell using the population weight. 
Population weight in grid cells outside the inhabited zones was set to zero to avoid any population being distrib-
uted. Through this distribution, the sum of gridded population in a township should equal its total population.

We iterated this dasymetric mapping process above for total population and population by age groups (0–14, 
15–59, ≥60, and ≥65 years old) to obtain their respective gridded population estimates. For each grid cell, we 
compared the estimated total population with the sum of population by age groups. Specifically, we calculated 
the correlation and RMSE between the two sets of estimates to reveal their consistency with each other (i.e., our 
second validation).

Data records
ASPECT is deposited as GEOTIFF files with WGS 1984 geographic coordinate system (EPSG: 4326), at the 
Figshare repository (https://doi.org/10.6084/m9.figshare.27323106.v1)20. The dataset includes GEOTIFF files on 
population density (persons per hectare) at 100 m spatial resolution. No data areas indicate townships missing 
the 2020 Census data (n = 590) and areas fall outside our study area, mainland China. Notably, for total pop-
ulation, two files are provided. The first file (“population_total_pop.tif ”) is gridded total population estimates 
directly from dasymetric mapping. The second file (“population_total_pop_sum.tif ”) is the sum of gridded 
population by age groups, which are estimated from their respective dasymetric mapping. As discussed later, 
total population estimates from the two files are in general consistent with each other.

ASPECT also includes GEOTIFF files on the proportion of population by age groups (0–14, 15–59, ≥60, 
and ≥65 years old) at 100 m spatial resolution. No data areas indicate townships missing the 2020 Census data, 
places fell outside our study area, and places with zero population. Proportion of a population age group is cal-
culated by dividing its population counts by the sum of population from all age groups (i.e., grid cell values from 
the “population_total_pop_sum.zip” file). An illustration of ASPECT is provided in Fig. 4.

Technical Validation
We performed three sets of validations on ASPECT. First, we evaluated the goodness-of-fit of the model regress-
ing population density on the covariates at the township level. Second, for each grid cell, we compared the 
estimated total population with the sum of estimated age-group-specific population. Lastly, we performed the 
dasymetric mapping using county-level data, which is the next administrative level coarser than townships. 
We aggregated gridded population estimates from this county-level mapping by townships and compared with 
actual township-level values. The comparison helps to justify the validity of the dasymetric mapping, with the 
assumption that the final township-level mapping will have higher accuracy than this county-level mapping 
used for validation.

Model goodness-of-fit. The random forest model fitting population density on covariates of % built-up 
area, building height, nighttime light intensity, distance to road, POI density, and topography at the township 
level achieved satisfactory accuracy (Table 2). The R2 was between 0.75 and 0.83, with the model predicting total 
population having the highest R2 and the model predicting population 0–14 years old having the lowest R2.

While using the same set of covariates for the dasymetric mapping, the importance of individual covariates 
in the random forest model varied across population groups (Fig. 5). Specifically, building height emerged as 

Covariate Definition Data sources and URLs

% built-up area % built-up area per 100 by 100 m grid cell as of 2021 ESA WorldCover 10 m v20022 (https://worldcover2021.esa.int)

Building height Average building height per 100 by 100 grid cell as of 2020 CNBH-10m23 (https://zenodo.org/records/7827315)

Nighttime light intensity Annual mean nighttime light intensity as of 2020 VIIRS Nighttime Day/Night Annual Band Composites V2.124 
(retrieved via Google Earth Engine, https://earthengine.google.com/)

Distance to road Distance to the nearest road (primary, secondary, and 
tertiary roads combined), with data collected in 2022 OpenStreetMap19 (https://download.geofabrik.de/)

Point-of-Interest (POI) density Kernel density of POIs AMap POI as of 2020 (https://lbs.amap.com/)

Topography Land elevation and slope NASA SRTM Digital Elevation 30m25 (retrieved via Google Earth 
Engine, https://earthengine.google.com/)

Water bodies Surface water bodies as of 2020 JRC Yearly Water Classification History, v1.426 (retrieved via Google 
Earth Engine, https://earthengine.google.com/)

Table 1. Covariates used to predict population distribution and their definition and data sources.
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the strongest predictor for township-level population density, though its importance magnitude varied between 
population groups. POI density, slope elevation, distance to road, % built-up area, and NTL intensity remained 
as secondary predictors, with importance values substantially lower than building height. Notably, covariate 
importance rankings differed between population groups. While total population, population 60–64 years old 
and ≥65 years old shared identical rankings, they differed from those of population 0–14 years old and 15–59 
years old. The differential effects of covariates on population density across population groups are further illus-
trated through partial dependence plots (Fig. 6), which estimate expected population densities corresponding 
to different covariate values.

Comparison between gridded total population and sum of population by age groups. Our eval-
uation revealed that, in a given city (n = 366), the correlation between gridded total population and sum of age 
group-specific populations was averaged at 0.96 (interquartile range, IQR: [0.94, 0.98]). The average RMSE was at 
5.47 (IQR: [4.09, 6.33]) persons/hectare. These results indicated that, despite some limited differences, the grid-
ded total population was generally consistent with the sum of gridded population by the age groups. Therefore, we 
used the sum of population by age groups as the denominator to calculate population age structure per grid cell.

Dasymetric mapping with county-level data. The ideal dataset to validate APSECT is gridded actual 
population counts at 100 m resolution, which is however not available. Here, we followed a validation approach 
employed by the previous literature8, which uses a spatial unit that is coarser than the finest one available to 

Fig. 4 Illustration of ASEPCT: (a) total population density (persons/hectare) nationwide and (b) zoom-in. 
Density and proportion of population (c) 0–14 years old and (d) ≥65 years old are also illustrated.
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estimate gridded population (i.e., county instead of township). The resulting gridded population is then summed 
by the finest spatial unit available (i.e., township) and compared with the actual population in this unit. The 
underlying assumption is that the accuracy of dasymetric mapping from the coarser spatial unit is likely lower 
than that from the finer spatial unit; thus, this assessment with county-level data provides a lower bound for the 
accuracy of the final mapping with township-level data.

Population group R2 RMSE (persons/ha)

Total population 0.83 18.01

Age 0–14 0.75 3.36

Age 15–59 0.83 12.54

Age 60–64 0.77 1.32

Age 65 and above 0.78 3.19

Table 2. Goodness-of-fit of model regressing population density on the covariates at township level.

Fig. 5 Covariate importance regarding different population groups.

Fig. 6 Partial dependence plot among the covariates and different population groups.
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We performed this validation using county-level population data and the same dasymetric mapping covar-
iates and process described above. We summed the resulting gridded population estimates by townships 
and compared the results with the actual township-level population. The results indicated that the estimated 
township-level population had good agreement with the actual population, with R2 between 0.61 and 0.84, 
and RMSE between 1,000 and 19,000 persons, pending on the population group (Fig. 7). All the regression 
coefficients were below 1, indicating that the dasymetric mapping tends to underestimate in more populated 
areas, particularly for population between 0–14 years old (Fig. 7b). When stratifying cities by population size, 
more populous cities exhibited stronger agreement between estimated and actual township-level values for total 
population and populations aged 0–14 and 15–59 years old, according to R2 (Table 3). However, township-level 
populations aged 60–64 years old and ≥65 years old were more accurately predicted in smaller cities. Since 
ASPECT is produced with township-level data, its accuracy is likely higher than this gridded dataset produced 
with county-level data.

Comparison with WorldPop. We additionally assessed the quality of WorldPop, a widely adopted popula-
tion map also with age-group-specific estimates, to justify the advantage of ASPECT. Specifically, the year 2020 

Fig. 7 Accuracy of ASPECT produced from county-level data. Here, ASPECT from county-level data is 
summarized by townships to estimate total population and population by age groups. These estimates are then 
compared against observed township-level populations. Red line: fitted, dashed line: identity line.

Accuracy metric Population group

City by total population size

<0.5 million 
(n = 17)

0.5–1 million 
(n = 20)

1–5 million 
(n = 210)

5–10 million 
(n = 75)

>10 million 
(n = 19)

R2

Total population 0.72 0.71 0.76 0.83 0.85

Age 0–14 0.62 0.63 0.59 0.68 0.75

Age 15–59 0.70 0.71 0.77 0.84 0.86

Age 60–64 0.79 0.74 0.68 0.67 0.61

Age 65 & above 0.75 0.70 0.60 0.53 0.53

RMSE (104 persons)

Total population 1.11 1.05 1.58 1.95 2.86

Age 0–14 0.25 0.23 0.42 0.50 0.56

Age 15–59 0.77 0.70 1.04 1.30 2.05

Age 60–64 0.04 0.05 0.09 0.11 0.19

Age 65 & above 0.11 0.13 0.24 0.32 0.45

Table 3. Accuracy of ASPECT produced from county-level data, stratified by city population size. Note: City 
size categories follow the State Council of China’s classification: small (<0.5 million), medium (0.5–1.0 million), 
large (1.0–5.0 million), very large (5.0–10.0 million), and extremely large (>10.0 million)27.
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Fig. 8 Accuracy of WorldPop against 2020 Census township-level data. Both WorldPop versions 2000–2020 
(a–e) and 2015–2030 R2024B V1 (f–j) are assessed. Here, gridded WorldPop data for year 2020 is summed 
by townships to estimate total population and population by age groups, and they are compared with their 
respective estimates from the 2020 Census. Red line: fitted, dashed line: identity line.
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data from two WorldPop versions were used: the first is the 2000–2020 version (with country totals adjusted to 
United Nations population estimates), which is the most recent final release21 (https://hub.worldpop.org/geodata/
summary?id=50346); the second is the 2015–2030 version (release R2024B V1) currently undergoing updates12 
(https://data.humdata.org/dataset/worldpop-age-and-sex-structures-2015-2030-chn). Two assessments were 
conducted. First, we assessed how well population estimates from WorldPop match with actual population from 
the 2020 Census at the township level. Second, we evaluated how WorldPop and ASPECT reflected spatial var-
iations in the estimated population age structure (e.g., proportion of population ≥65 years old). In the second 
assessment, we calculated the proportion of a given age group in each grid cell. We then extracted all grid cells 
within a spatial unit and calculated the variations in the estimated proportions. We repeated this process for all 
age groups (0–14, 15–59, 60–64, ≥65 years old) and administrative levels of township, county, city, and province.

Our first assessment indicated that, compared with ASPECT produced with county-level data (i.e., a 
lower bound on the prediction accuracy of the final ASPECT dataset, Fig. 7), WorldPop (version 2000–2020) 
likely exhibited larger errors when predicting township-level populations from the 2020 Census (Fig. 8a–e). 
Specifically, we found an R² between 0.41 and 0.63 and an RMSE between 1,500 and 28,000 persons when com-
paring WorldPop (version 2000–2020) with the 2020 Census at the township level (Fig. 8a–e). These agreements 
were lower than those from our estimates using ASPECT produced with county-level data (Fig. 7). The lower 
agreement and underestimation are likely due to the population projection methods used in WorldPop (version 
2000–2020), as described in the Background & Summary section, which failed to accurately capture popula-
tion changes between 2010 and 2020 at the township level. Meanwhile, WorldPop (version 2015–2030, release 
R2024B V1) showed improved performance in predicting township-level populations, with R² values between 
0.56 and 0.86 and RMSEs between 1,300 and 16,500 persons (Fig. 7) – comparable to ASPECT produced with 
county-level data. Note that the county-level ASPECT likely represents a lower bound on the prediction accu-
racy of the final ASPECT dataset based on township-level data. Therefore, we assume that our final ASPECT 
dataset is at least comparable to, if not better than, WorldPop (version 2015–2030, release R2024B V1) in esti-
mating gridded population counts, as the former is downscaled using township-level data, whereas the latter 
uses the coarser county-level data.

Our second assessment shows that, compared with ASPECT, both versions of WorldPop (2000–2020 and 
2015–2030 R2024B V1) showed smaller spatial variations in the estimated proportion of population by age 
groups for year 2020. When summarized by townships, there were limited spatial variations in WorldPop’s age 
structure estimates (Table 4). The spatial variation in WorldPop’s age structure estimates increased when a larger 
spatial extent was used (i.e., province versus township). However, for a given spatial extent (i.e., province, city, 
county, or township), the spatial variations in WorldPop were between 2% and 30% of those in ASPECT. An 
illustration also revealed that ASPECT showed greater spatial variations in the estimated population age struc-
ture (Fig. 9b). This is because we iteratively conducted the dasymetric mapping to estimate population per age 
group for ASPECT. However, the estimates in WorldPop showed lower spatial variations and appeared to be 
truncated (Fig. 9c,d). It is likely that WorldPop multiplies county-level age structures by the gridded total popu-
lation to estimate population in different age groups. Therefore, grid cells in the same county may share the same 
proportion of population from a specific age group.

Comparison with PopSE by Chen et al. We also compared ASPECT with PopSE by Chen et al., which 
uses a hybrid of township-level and county-level data from the 2020 Census to estimate gridded population distri-
bution15. Specifically, a sample of 15,564 townships and all counties are used to perform the dasymetric mapping, 
representing, to our best knowledge, the first effort to employ a large sample of 2020 Census township-level data. 

Age group Spatial extent ASPECT mean [IQR]
WorldPop  
(ver. 2000–2020) mean [IQR]

WorldPop  
(ver. 2015–2030 R2024B V1) mean [IQR]

% 0–14

province 11.69 [10.41, 13.51] 3.47 [2.17, 4.64] 3.22 [2.08, 4.27]

city 11.34 [9.44, 13.39] 1.99 [1.26, 2.43] 1.88 [1.16, 2.38]

county 10.40 [8.19, 12.75] 0.51 [0.16, 0.61] 0.18 [0.06, 0.20]

township 9.55 [6.54, 12.84] 0.22 [0.00, 0.23] 0.08 [0.00, 0.09]

% 15–59

province 13.23 [12.32, 14.12] 3.90 [2.78, 4.73] 4.03 [3.45, 4.48]

city 12.35 [11.38, 13.25] 2.38 [1.52, 3.13] 2.57 [1.87, 3.18]

county 11.86 [10.87, 12.94] 0.65 [0.19, 0.78] 0.27 [0.08, 0.30]

township 10.33 [9.30, 12.07] 0.27 [0.00, 0.28] 0.12 [0.00, 0.13]

% 60–64

province 3.78 [3.29, 4.28] 0.79 [0.58, 0.90] 1.00 [0.77, 1.21]

city 3.58 [2.95, 4.23] 0.48 [0.32, 0.60] 0.62 [0.40, 0.76]

county 3.56 [2.83, 4.22] 0.14 [0.04, 0.17] 0.07 [0.02, 0.08]

township 3.30 [2.43, 4.11] 0.06 [0.00, 0.06] 0.03 [0.00, 0.03]

% ≥65

province 8.69 [7.67, 9.91] 2.07 [1.50, 2.34] 2.55 [2.11, 2.66]

city 8.05 [6.91, 9.28] 1.23 [0.80, 1.55] 1.61 [1.04, 1.98]

county 7.79 [6.53, 9.10] 0.37 [0.10, 0.44] 0.18 [0.05, 0.20]

township 6.79 [5.18, 8.51] 0.15 [0.00, 0.15] 0.08 [0.00, 0.08]

Table 4. Spatial variations, measured by standard deviation, in gridded estimates on the proportion of 
population by age groups from ASPECT and WorldPop, summarized across different spatial extents.
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Compare with PopSE which estimates total population at the grid-level, ASPECT further estimates the spatial 
distribution of population by four age groups (0–14, 15–59, 60–64, ≥65 years old). Moreover, ASPECT uses a 
larger number of townships for the dasymetric mapping (n = 40,718, Fig. 1). This refined source data may better 
capture spatial variations in population distribution, at least between the townships.

Usage Notes
The files of ASPECT, which are in GEOTIFF format, can be processed by GIS software such as ArcGIS and 
QGIS, and by programing language packages such as Rasterio in Python.

Code availability
The Python code for generating ASPECT is available on GitHub (https://github.com/yangju-90/ASPECT). In 
the repository, we also provided an external link to a sample of the required input data for producing ASPECT.
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